Jeff Dean

About a year ago, the Google Brain team first shared our mission “Make machines intelligent. Improve people’s lives.” In that time, we’ve shared updates on our work to infuse machine learning across Google products that hundreds of millions of users access everyday, including Translate, Maps, and more. Today, I’d like to share more about how we approach this mission both through advancement in the fundamental theory and understanding of machine learning, and through research in the service of product. Five years ago, our colleagues Alfred Spector, Peter Norvig, and Slav Petrov published a blog post and paper explaining Google’s hybrid approach to research, an approach that always allowed for varied balances between curiosity-driven and application-driven research. The biggest challenges in machine learning that the Brain team is focused on require the broadest exploration of new ideas, which is why our researchers set their own agendas with much of our team focusing specifically on advancing the state-of-the-art in machine learning. In doing so, we have published hundreds of papers over the last several years in conferences such as NIPS, ICML and ICLR, with acceptance rates significantly above conference averages.

location

research.googleblog.com

Advertisements